In a fraction, twice the numerator is 2 more than the denominator. If 3 is added to the numerator and to the denominator, the new fraction is $\frac{2}{3}$. Find the original fraction.
Denominator, $\mathrm{d}=\mathrm{x}$
It is given that twice the numerator is equal to two more than the denominator.
$\therefore$ Twice of numerator, $2 \mathrm{n}=\mathrm{x}+2$
$\therefore$ Numerator, $\mathrm{n}=\frac{\mathrm{x}+2}{2}$
$\therefore \frac{n+3}{d+3}=\frac{2}{3}$
$\Rightarrow 3(n+3)=2(d+3) \quad$ (bycross multiplication)
$\Rightarrow 3 n+9=2 d+6$
$\Rightarrow 3 n-2 d=6-9$
$\Rightarrow 3 n-2 d=-3$
On replace $\mathrm{d}$ by $\mathrm{x}$ and $\mathrm{n}$ by $\frac{x+2}{2}$ :
$\Rightarrow 3\left(\frac{x+2}{2}\right)-2 x=-3$
$\Rightarrow \frac{3 x+6-4 x}{2}=-3 \quad($ taking the L. C.M. of 2 and 1 as 2$)$
$\Rightarrow 6-x=-6 \quad$ (by cross multipliction)
$\Rightarrow-x=-6-6$
$\Rightarrow x=12$
The denominator is 12 .
$\therefore$ Numerator $=\frac{x+2}{2}=\frac{12+2}{2}=\frac{14}{2}=7$
$\therefore$ Original fraction $=\frac{7}{12}$