In a culture, the bacteria count is 1,00,000. The number is increased by 10% in 2 hours. In how many hours will the count reach 2,00,000, if the rate of growth of bacteria is proportional to the number present?
Let y be the number of bacteria at any instant t.
It is given that the rate of growth of the bacteria is proportional to the number present.
$\therefore \frac{d y}{d t} \propto y$
$\Rightarrow \frac{d y}{d t}=k y$ (where $k$ is a constant)
$\Rightarrow \frac{d y}{y}=k d t$
Integrating both sides, we get:
$\int \frac{d y}{y}=k \int d t$
$\Rightarrow \log y=k t+\mathrm{C}$ ....(1)
Let y0 be the number of bacteria at t = 0.
⇒ log y0 = C
Substituting the value of C in equation (1), we get:
$\log y=k t+\log y_{0}$
$\Rightarrow \log y-\log y_{0}=k t$
$\Rightarrow \log \left(\frac{y}{y_{0}}\right)=k t$
$\Rightarrow k t=\log \left(\frac{y}{y_{0}}\right)$ ...(2)
Also, it is given that the number of bacteria increases by 10% in 2 hours.
$\Rightarrow y=\frac{110}{100} y_{0}$
$\Rightarrow \frac{y}{y_{0}}=\frac{11}{10}$ ...(3)
Substituting this value in equation (2), we get:
$k \cdot 2=\log \left(\frac{11}{10}\right)$
$\Rightarrow k=\frac{1}{2} \log \left(\frac{11}{10}\right)$
Therefore, equation (2) becomes:
$\frac{1}{2} \log \left(\frac{11}{10}\right) \cdot t=\log \left(\frac{y}{y_{0}}\right)$
$\Rightarrow t=\frac{2 \log \left(\frac{y}{y_{0}}\right)}{\log \left(\frac{11}{10}\right)}$ ...(4)
Now, let the time when the number of bacteria increases from 100000 to 200000 be t1.
$\Rightarrow y=2 y_{0}$ at $t=t_{1}$
From equation (4), we get:
$t_{1}=\frac{2 \log \left(\frac{y}{y_{0}}\right)}{\log \left(\frac{11}{10}\right)}=\frac{2 \log 2}{\log \left(\frac{11}{10}\right)}$
Hence, in $\frac{2 \log 2}{\log \left(\frac{11}{10}\right)}$ hours the number of bacteria increases from 100000 to 200000 .