In a certain thermodynamical process,

Question:

In a certain thermodynamical process, the pressure of a gas depends on its volume as $\mathrm{kV}^{3}$. The work done when the temperature changes from $100^{\circ} \mathrm{C}$ to $300^{\circ} \mathrm{C}$ will be_________ $\mathrm{nR}$, where $\mathrm{n}$ denotes number of moles of a gas.

Solution:

$\mathrm{P}=\mathrm{kV}^{3}$

$\mathrm{T}_{\mathrm{i}}=100^{\circ} \mathrm{C} \& \mathrm{~T}_{\mathrm{f}}=300^{\circ} \mathrm{C}$

$\Delta \mathrm{T}=300-100$

$\Delta \mathrm{T}=200^{\circ} \mathrm{C}$

$P=k V^{3}$

now $\mathrm{PV}=\mathrm{nRT}$

$\therefore \mathrm{kV}^{4}=\mathrm{nRT}$

now $4 \mathrm{kV} 3 \mathrm{dV}=\mathrm{nRdT}$

$\therefore \mathrm{PdV}=\mathrm{nRdT} / 4$

$\therefore$ Work $=\int \mathrm{PdV}=\int \frac{\mathrm{nRdT}}{4}=\frac{\mathrm{nR}}{4} \Delta \mathrm{T}$

$=\frac{200}{4} \times \mathrm{nR}=50 \mathrm{nR}$

Leave a comment