In a bank, principal increases continuously at the rate of $r \%$ per year. Find the value of $r$ if Rs 100 doubles itself in 10 years (log $_{e} 2=0.6931$ ).
Let p, t, and r represent the principal, time, and rate of interest respectively.
It is given that the principal increases continuously at the rate of r% per year.
$\Rightarrow \frac{d p}{d t}=\left(\frac{r}{100}\right) p$
$\Rightarrow \frac{d p}{p}=\left(\frac{r}{100}\right) d t$
Integrating both sides, we get:
$\int \frac{d p}{p}=\frac{r}{100} \int d t$
$\Rightarrow \log p=\frac{r t}{100}+k$
$\Rightarrow p=e^{\frac{r t}{100}+k}$ ...(1)
It is given that when $t=0, p=100$.
$\Rightarrow 100=e^{k} \ldots(2)$
Now, if $t=10$, then $p=2 \times 100=200$.
Therefore, equation (1) becomes:
$200=e^{\frac{r}{10}+k}$
$\Rightarrow 200=e^{\frac{r}{10}} \cdot e^{k}$
$\Rightarrow 200=e^{\frac{r}{10}} \cdot 100$ ...(2)
$\Rightarrow e^{\frac{r}{10}}=2$
$\Rightarrow \frac{r}{10}=\log _{e} 2$
$\Rightarrow \frac{r}{10}=0.6931$
$\Rightarrow r=6.931$
Hence, the value of r is 6.93%.