In a bank, principal increases continuously at the rate of $5 \%$ per year. An amount of Rs 1000 is deposited with this bank, how much will it worth after 10 years $\left(e^{0.5}=1.648\right)$.
Let p and t be the principal and time respectively.
It is given that the principal increases continuously at the rate of 5% per year.
$\Rightarrow \frac{d p}{d t}=\left(\frac{5}{100}\right) p$
$\Rightarrow \frac{d p}{d t}=\frac{p}{20}$
$\Rightarrow \frac{d p}{p}=\frac{d t}{20}$
Integrating both sides, we get:
$\int \frac{d p}{p}=\frac{1}{20} \int d t$
$\Rightarrow \log p=\frac{t}{20}+\mathrm{C}$
$\Rightarrow p=e^{\frac{1}{20}+\mathrm{C}}$ ...(1)
Now, when t = 0, p = 1000.
$\Rightarrow 1000=e^{C} \ldots(2)$
At t = 10, equation (1) becomes:
$p=e^{\frac{1}{2}+\mathrm{C}}$
$\Rightarrow p=e^{0.5} \times e^{\mathrm{C}}$
$\Rightarrow p=1.648 \times 1000$
$\Rightarrow p=1648$
Hence, after 10 years the amount will worth Rs 1648.