In a ∆ABC, right angled at B, AB = 24 cm, BC = 7 cm. Determine
(i) sin A, cos A
(ii) sin C, cos C
(i) The given triangle is below:-
$B C=7 \mathrm{~cm}$
$\angle A B C=90^{\circ}$
To Find: $\sin A, \cos A$
In this problem, Hypotenuse side is unknown
Hence we first find Hypotenuse side by Pythagoras theorem
By Pythagoras theorem,
We get,
$A C^{2}=A B^{2}+B C^{2}$
$A C^{2}=24^{2}+7^{2}$
$A C^{2}=576+49$
$A C^{2}=625$
$A C=\sqrt{625}$
$A C=25$
Hypotenuse $=25$
By definition,
$\sin A=\frac{\text { Perpendicular side opposite to } \angle A}{\text { Hypotenuse }}$
$\sin A=\frac{B C}{A C}$
$\sin A=\frac{7}{25}$
By definition,
$\cos A=\frac{\text { Base side adjacent to } \angle A}{\text { Hypotenuse }}$
$\cos A=\frac{A B}{A C}$
$\cos A=\frac{24}{25}$
Answer:
$\sin A=\frac{7}{25} \cos A=\frac{24}{25}$
(ii) The given triangle is below:
Given: In $\triangle \mathrm{ABC}, A B=24 \mathrm{~cm}$
$B C=7 \mathrm{~cm}$
$\angle A B C=90^{\circ}$
To Find: $\sin C, \cos C$
In this problem, Hypotenuse side is unknown
Hence we first find Hypotenuse side by Pythagoras theorem
By Pythagoras theorem,
We get,
$A C^{2}=A B^{2}+B C^{2}$
$A C^{2}=24^{2}+7^{2}$
$A C^{2}=576+49$
$A C^{2}=625$
$A C=\sqrt{625}$
$A C=25$
Hypotenuse $=25$
By definition,
$\sin C=\frac{\text { Perpendicular side opposite to } \angle \mathrm{C}}{\text { Hypotenuse }}$
$\sin C=\frac{A B}{A C}$
$\sin C=\frac{24}{25}$
By definition,
$\cos C=\frac{\text { Base side adjacent to } \angle C}{\text { Hypotenuse }}$
$\cos C=\frac{B C}{A C}$
$\cos C=\frac{7}{25}$
Answer:
$\sin C=\frac{24}{25} \cos C=\frac{7}{25}$