In a $\triangle \mathrm{ABC}$ right angled at $\mathrm{B}, \angle \mathrm{A}=\angle \mathrm{C}$. Find the values of
(i) sin A cos C + cos A sin C
(ii) sin A sin B + cos A cos B
(i) We have drawn the following figure related to given information
To find:
$\sin A \cos C+\cos A \sin C \ldots \ldots$ (1)
Now we have,
$\sin A=\frac{B C}{A C}, \sin A=\frac{A B}{A C}$
$\cos A=\frac{A B}{A C}, \cos C=\frac{B C}{A C}$
Now by substituting the above values in equation (1)
We get,
\sin A \cos C+\cos A \sin C=\frac{B C}{A C} \times \frac{B C}{A C}+\frac{A B}{A C} \times \frac{A B}{A C}
$=\frac{B C^{2}}{A C^{2}}+\frac{A B^{2}}{A C^{2}}$
$=\frac{B C^{2}+A B^{2}}{A C^{2}}$
Therefore,
$\sin A \cos C+\cos A \sin C=\frac{B C^{2}+A B^{2}}{A C^{2}}$.......(2)
Now in right angled $\triangle A B C$
By applying Pythagoras theorem
We get,
$A C^{2}=A B^{2}+B C^{2}$
Now, by substituting above value of $A C^{2}$ in equation (2)
We get,
$\sin A \cos C+\cos A \sin C=\frac{B C^{2}+A B^{2}}{A B^{2}+B C^{2}}$
$\Rightarrow \sin A \cos C+\cos A \sin C=\frac{A B^{2}+B C^{2}}{A B^{2}+B C^{2}}$
Now both numerator and denominator contains $A B^{2}+B C^{2}$
Therefore it gets cancelled and 1 remains
Hence $\sin A \cos C+\cos A \sin C=1$
(ii) We have drawn the following figure
To find:
$\sin A \sin B+\cos A \cos B$....(1)
Now we know that sum of all the angles of any triangle is 180°
Therefore,
$\angle A+\angle B+\angle C=180^{\circ}$
Since $\angle A=\angle C$ and $\angle B=90^{\circ}$
Therefore,
$\angle A+90^{\circ}+\angle A=180^{\circ}$
$\Rightarrow 2 \angle A+90^{\circ}=180^{\circ}$
$\Rightarrow \quad 2 \angle A=180^{\circ}-90^{\circ}$
$\Rightarrow \quad 2 \angle A=90^{\circ}$
$\Rightarrow \quad \angle A=\frac{90^{\circ}}{2}$
$\Rightarrow \quad \angle A=45^{\circ}$
It is given that $\angle A=\angle C$
Therefore,
$\angle A=\angle C=45^{\circ} \ldots \ldots(2)$
Now we have,
$\sin A=\frac{B C}{A C}, \sin B=\sin 90^{\circ}=1$
$\cos A=\frac{A B}{A C}, \cos B=\cos 90^{\circ}=0$
Now by substituting the above values in equation (1)
We get,
$\sin A \sin B+\cos A \cos B=\sin 45^{\circ} \times 1+\cos 45^{\circ} \times 0$
$=\sin 45^{\circ}$
Since $\sin 45^{\circ}=\frac{1}{\sqrt{2}}$
Therefore $\sin A \sin B+\cos A \cos B=\frac{1}{\sqrt{2}}$