In a $\Delta \mathrm{ABC}$, right angled at $\mathrm{A}$, if $\tan \mathrm{C}=\sqrt{3}$, find the value of $\sin \mathrm{B} \cos \mathrm{C}+\cos \mathrm{B} \sin \mathrm{C}$.
Given:
$\tan C=\sqrt{3}$
To find: $\sin B \cos C+\cos B \sin C$
The given $\triangle A B C$ is as shown in figure below
Side BC is unknown and can be found using Pythagoras theorem
Therefore,
$B C^{2}=A B^{2}+A C^{2}$
Now by substituting the value of known sides from figure (a)
We get,
$B C^{2}=(\sqrt{3})^{2}+1^{2}$
$=3+1$
$=4$
Now by taking square root on both sides
We get,
$B C=\sqrt{4}$
$=2$
Therefore Hypotenuse side BC = 2 …… (1)
Now $\sin B=\frac{\text { Perpendicular side opposite to } \angle B}{\text { Hypotenuse }}$
Therefore,
$\sin B=\frac{A C}{B C}$
Now by substituting the values from equation (1) and figure (a)
We get,
$\sin B=\frac{1}{2}$.....(2)
Now $\cos B=\frac{\text { Base side adjacent to } \angle B}{\text { Hypotenuse }}$
Therefore,
$\cos B=\frac{A B}{B C}$
Now by substituting the values from equation (1) and figure (a)
We get,
$\cos B=\frac{\sqrt{3}}{2}$....(3)
Now $\sin C=\frac{\text { Perpendicular side opposite to } \angle C}{\text { Hypotenuse }}$
Therefore,
$\sin C=\frac{A B}{B C}$
Now by substituting the values from equation (1) and figure (a)
We get,
$\sin C=\frac{\sqrt{3}}{2} \ldots \ldots$(4)
Now by definition,
$\tan C=\frac{\sin C}{\cos C}$
Therefore,
$\cos C=\frac{\sin C}{\tan C}$
Now by substituting the value of $\sin C$ and $\tan C$ from equation (4) and given data respectively
We get,
$\cos C=\frac{\frac{\sqrt{3}}{2}}{\sqrt{3}}$
$\cos C=\frac{\sqrt{3}}{2 \sqrt{3}}$
Now $\sqrt{3}$ gets cancelled as it is present in both numerator and denominator
Therefore,
$\cos C=\frac{1}{2}$.....(5)
Now by substituting the value of $\sin B, \cos B, \sin C$ and $\cos C$ from equation $(2),(3),(4)$ and (5) respectively in $\sin B \cos C+\cos B \sin C$
We get,
$\sin B \cos C+\cos B \sin C=\frac{1}{2} \times \frac{1}{2}+\frac{\sqrt{3}}{2} \times \frac{\sqrt{3}}{2}$
$=\frac{1}{4}+\frac{3}{4}$
$=\frac{4}{4}$
$=1$
$\sin B \cos C+\cos B \sin C=1$