Question:
In a ∆ABC, if a = 8, b = 9 and 3 cos C = 2, then C = ____________.
Solution:
a = 8 , b = 9
3 cosC = 2
$\Rightarrow \cos C=\frac{2}{3}$
also using, cosine formula
$\cos C=\frac{a^{2}+b^{2}-c^{2}}{2 a b}$
$\Rightarrow \frac{2}{3}=\frac{8^{2}+9^{2}-c^{2}}{2 \times 8 \times 9}$
$\Rightarrow 4 \times 8 \times 3=8^{2}+9^{2}-c^{2}$
$\Rightarrow C^{2}=8^{2}+9^{2}-12 \times 8$
= 49
i. e $C=7$