In a $\triangle A B C, A B=B C=C A=2 a$ and $A D \perp B C$. Prove that
(i) $\mathrm{AD}=a \sqrt{3}$
(ii) Area $(\Delta A B C)=\sqrt{3} a^{2}$
In $\triangle A D B$ and $\triangle A D C$
$\angle B=\angle C \quad\left(60^{\circ}\right.$ each $)$
$A D=A D$
$\angle A D B=\angle A D C \quad\left(90^{\circ}\right.$ each $)$
$\triangle A D B \cong \triangle A D C \quad$ (AAS congruence theorem)
$\therefore B D=D C$
$\therefore B C=2 B D$
But $B C=2 a$ therefore, we get,
$2 a=2 B D$....(1)
Now we will divide both sides of the equation (1) by 2, we get,
$\therefore B D=a$
Now we will use Pythagoras theorem in right angled triangle ADB.
$A B^{2}=A D^{2}+B D^{2}$
Now we will substitute the values of AB and BD we get,
$(2 a)^{2}=A D^{2}+a^{2}$
$4 a^{2}=A D^{2}+a^{2}$
$3 a^{2}=A D^{2}$
$\therefore A D=\sqrt{3} a$
Therefore, $A D=\sqrt{3} a$.
We have given an equilateral triangle and we know that the area of the equilateral triangle is $\frac{\sqrt{3}}{4} \times$ side $^{2}$
Here, side is 2a
$\therefore A(\Delta A B C)=\frac{\sqrt{3}}{4} \times(2 a)^{2}$
$\therefore A(\triangle A B C)=\frac{\sqrt{3}}{4} \times 4 a^{2}$
$A(\triangle A B C)=\sqrt{3} a^{2}$
Therefore, $A(\triangle A B C)=\sqrt{3} a^{2}$.