Question:
If $y=y(x)$ is the solution of the differential equation $\frac{d y}{d x}+(\tan x) y=\sin x, 0 \leq x \leq \frac{\pi}{3}$, with $\mathrm{y}(0)=0$, then $\mathrm{y}\left(\frac{\pi}{4}\right)$ equal to :
Correct Option: , 2
Solution:
$\frac{d y}{d x}+(\tan x) y=\sin x ; 0 \leq x \leq \frac{\pi}{3}$
I. $F .=e^{\int \tan x d x}=e^{\ell \ln \sec x}=\sec x$
$y \sec x=\int \tan x d x$
$y \sec x=\int \tan x d x$
$y \sec x=\ell \operatorname{n}|\sec x|+C$
$\mathrm{x}=0, \mathrm{y}=0 \quad \Rightarrow \quad \therefore \mathrm{c}=0$
$y \sec x=\ell \mathrm{n}|\sec x|$
$y=\cos x \cdot \ln |\sec x|$
$\left.y\right|_{x=\frac{\pi}{4}}=\left(\frac{1}{\sqrt{2}}\right) \cdot \ell n \sqrt{2}$
$\left.y\right|_{x=\frac{\pi}{4}}=\frac{1}{2 \sqrt{2}} \log _{e} 2$