If $y=y(x)$ is the solution of the differential equation, $\frac{d y}{d x}+2 y \tan x=\sin x, y\left(\frac{\pi}{3}\right)=0$, then
the maximum value of the function $\mathrm{y}(\mathrm{x})$ over $\mathbb{R}$ is equal to :
Correct Option: , 4
$\frac{d y}{d x}+2 y \tan x=\sin x$
$\mathrm{I} \mathrm{F}=\mathrm{e}^{\int 2 \tan x \mathrm{dx}}=\mathrm{e}^{2 \ln \sec x}$
I.F. $=\sec ^{2} x$
$y \cdot\left(\sec ^{2} x\right)=\int \sin x \cdot \sec ^{2} x d x$
$y \cdot\left(\sec ^{2} x\right)=\int \sec x \tan x d x$
$y \cdot\left(\sec ^{2} x\right)=\sec x+C$
$x=\frac{\pi}{3} ; y=0$
$\Rightarrow \quad C=-2$
$\Rightarrow \quad y=\frac{\sec x-2}{\sec ^{2} x}=\cos x-2 \cos ^{2} x$
$\mathrm{y}=\mathrm{t}-2 \mathrm{t}^{2} \Rightarrow \frac{\mathrm{dy}}{\mathrm{dt}}=1-4 \mathrm{t}=0 \Rightarrow \mathrm{t}=\frac{1}{4}$
$\therefore \quad \max =\frac{1}{4}-\frac{1}{8}=\frac{2-1}{8}=\frac{1}{8}$