Question:
If $y=\sin x$ and $x$ changes from $\pi / 2$ to $22 / 14$, what is the approximate change in $y$ ?
Solution:
Let:
$x=\frac{\pi}{2}$
$x+\Delta x=\frac{22}{14}$
$\Rightarrow d x=\Delta x=\frac{22}{14}-\frac{\pi}{2}=0$
Now, $y=\sin x$
$\Rightarrow \frac{d y}{d x}=\cos x$
$\Rightarrow\left(\frac{d y}{d x}\right)_{x=\frac{x}{2}}=\cos \left(\frac{\pi}{2}\right)=0$
$\therefore \Delta y=\frac{d y}{d x} \Delta x=0 \times 0=0$
$\Rightarrow \triangle y=0$
Hence, there is no change in the value of y.