Question:
If $y=m x+4$ is a tangent to both the parabolas, $y^{2}=4 x$ and $x^{2}=2 b y$, then $b$ is equal to:
Correct Option: 3,
Solution:
$y=m x+4$...(i)
Tangent of $y^{2}=4 x$ is
$\Rightarrow \quad y=m x+\frac{1}{m}$...(ii)
$\left[\because\right.$ Equation of tangent of $y^{2}=4 a x$ is $\left.y=m x+\frac{a}{m}\right]$
From (i) and (ii)
$4=\frac{1}{m} \Rightarrow m=\frac{1}{4}$
So, line $y=\frac{1}{4} x+4$ is also tangent to parabola
$x^{2}=2 b y$, so solve both equations.
$x^{2}=2 b\left(\frac{x+16}{4}\right)$
$\Rightarrow \quad 2 x^{2}-b x-16 b=0$
$\Rightarrow \quad D=0 \quad$ [For tangent]
\Rightarrow b^{2}-4 \times 2 \times(-16 b)=0
$\Rightarrow b^{2}+32 \times 4 b=0$
$b=-128, b=0$ (not possible)