If $x^{4}+\left(1 / x^{4}\right)=119$, Find the value of $x^{3}-\left(1 / x^{3}\right)$
Given, $x^{4}+\left(1 / x^{4}\right)=119 \quad \ldots .1$
We know that $(x+y)^{2}=x^{2}+y^{2}+2 x y$
Substitute $x^{4}+\left(1 / x^{4}\right)=119$ in eq 1
$\left(x^{2}+\left(1 / x^{2}\right)\right)^{2}=x^{4}+\left(1 / x^{4}\right)+\left(2^{*} x^{2} * 1 / x^{2}\right)$
$=x^{4}+\left(1 / x^{4}\right)+2$
= 119 + 2
= 121
$\left(x^{2}+\left(1 / x^{2}\right)\right)^{2}=121$
$x^{2}+\left(\frac{1}{x^{2}}\right)=\sqrt{121}$
$x^{2}+\left(1 / x^{2}\right)=\pm 11$
Now, find $(x-1 / x)$
We know that $(x-y)^{2}=x^{2}+y^{2}-2 x y$
$(x-1 / x)^{2}=x^{2}+1 / x^{2}-\left(2^{*} x^{*} 1 / x\right.$
$=x^{2}+1 / x^{2}-2$
$=11-2$
$=9$
$(x-1 / x)=\sqrt{9}$
$=\pm 3$
We need to find $x^{3}-\left(1 / x^{3}\right)$
We know that, $a^{3}-b^{3}=(a-b)\left(a^{2}+b^{2}-a b\right)$
$x^{3}-\left(1 / x^{3}\right)=(x-1 / x)\left(x^{2}+\left(1 / x^{2}\right)+x^{*} 1 / x\right.$
Here, $x^{2}+\left(1 / x^{2}\right)=11$ and $(x-1 / x)=3$
$x^{3}-\left(1 / x^{3}\right)=3(11+1)$
= 3(12)
= 36
Hence, the value of $x^{3}-\left(1 / x^{3}\right)=36$