Question:
If $\left(x^{2}+1 / x^{2}\right)=98$, Find the value of $x^{3}+1 / x^{3}$
Solution:
Given, $\left(x^{2}+1 / x^{2}\right)=98$
We know that, $(x+y)^{2}=x^{2}+y^{2}+2 x y \ldots 1$
Substitute $\left(x^{2}+1 / x^{2}\right)=98$ in eq 1
$(x+1 / x)^{2}=x^{2}+1 / x^{2}+2 * x^{*} 1 / x$
$(x+1 / x)^{2}=x^{2}+1 / x^{2}+2$
$(x+1 / x)^{2}=98+2$
$(x+1 / x)^{2}=100$
$(x+1 / x)=\sqrt{100}$
$(x+1 / x)=\pm 10$
We need to find $x^{3}+1 / x^{3}$
So, $a^{3}+b^{3}=(a+b)\left(a^{2}+b^{2}-a b\right)$
$x^{3}+1 / x^{3}=(x+1 / x)\left(x^{2}+1 / x^{2}-\left(x^{*} 1 / x\right)\right.$
We know that,
$(x+1 / x)=10$ and $\left(x^{2}+1 / x^{2}\right)=98$
$x^{3}+1 / x^{3}=10(98-1)$
$x^{3}+1 / x^{3}=10(97)$
$x^{3}+1 / x^{3}=970$
Hence, the value of $x^{3}+1 / x^{3}=970$