Question:
If x, y, z are positive integers then value of the expression (x + y) (y + z) (z + x) is
(a) = 8xyz
(b) > 8xyz
(c) < 8xyz
(d) = 4xyz
Solution:
Let x, y, z be positive integers then (x + y) (y + z) (z + x) = ??
Since $\frac{x+y}{2}>\sqrt{x y}$ (Since arithmetic mean $\geq$ geometric mean)
i. e $x+y>2 \sqrt{x y}$
Similarly $y+z>2 \sqrt{y z}$ and $z+x>2 \sqrt{z x}$
$\therefore(x+y)(y+z)(z+x)>8 \sqrt{x y} \sqrt{y z} \sqrt{z x}$
$=8 \sqrt{x^{2} y^{2} z^{2}}$
$=8 x y z$
$\therefore(x+y)(y+z)(z+x)>8 x y z$
Hence, the correct answer is option B.