If $x, y \in \mathbb{R}$, then the determinant $\Delta=\left|\begin{array}{ccc}\cos x & -\sin x & 1 \\ \sin x & \cos x & 1 \\ \cos (x+y) & -\sin (x+y) & 0\end{array}\right|$ lies in the interval
(a) $[-\sqrt{2}, \sqrt{2}]$
(b) $[-1,1]$
(c) $[-\sqrt{2}, 1]$
(d) $[-1,-\sqrt{2}]$
$\Delta=\left|\begin{array}{ccc}\cos x & -\sin x & 1 \\ \sin x & \cos x & 1 \\ \cos (x+y) & -\sin (x+y) & 0\end{array}\right|$
$=\left|\begin{array}{ccc}\cos x & -\sin x & 1 \\ \sin x & \cos x & 1 \\ 0 & 0 & \sin y-\cos y\end{array}\right|$ [Applying $R_{3} \rightarrow R_{3}-\cos y R_{1}+\sin y R_{2}$ ]
$=(\sin y-\cos y)\left(\cos ^{2} x+\sin ^{2} x\right)$
$=\sin y-\cos y$
$=\sqrt{2}\left(\frac{1}{\sqrt{2}} \sin y-\frac{1}{\sqrt{2}} \cos y\right)$
$=\sqrt{2}\left(\cos \frac{\pi}{4} \sin y-\sin \frac{\pi}{4} \cos y\right)$
$=\sqrt{2} \sin \left(y-\frac{\pi}{4}\right)$
Therefore, $-\sqrt{2} \leq \Delta \leq \sqrt{2}$.
Hence, the correct option is (a).