Question:
If $x=(\sec A+\sin A)$ and $y=(\sec A-\sin A)$, prove that $\left(\frac{2}{x+y}\right)^{2}+\left(\frac{x-y}{2}\right)^{2}=1$
Solution:
Given:
x = secA + sinA .....(1)
y = secA – sinA .....(2)
Adding (1) and (2), we get
$x+y=\sec A+\sin A+\sec A-\sin A$
$\Rightarrow 2 \sec A=x+y$
$\Rightarrow \sec A=\frac{x+y}{2}$
$\Rightarrow \frac{1}{\sec A}=\frac{2}{x+y}$
$\Rightarrow \cos A=\frac{2}{x+y} \quad \ldots \ldots(3)$
Subtracting (2) from (1), we get
$x-y=\sec A+\sin A-\sec A+\sin A$
$\Rightarrow 2 \sin A=x-y$
$\Rightarrow \sin A=\frac{x-y}{2} \quad \ldots \ldots(4)$
We know
$\cos ^{2} A+\sin ^{2} A=1$
$\Rightarrow\left(\frac{2}{x+y}\right)^{2}+\left(\frac{x-y}{2}\right)^{2}=1 \quad[$ Using $(3)$ and $(4)]$