Question:
If x = r sin θ cos ϕ, y = r sin θ sin ϕ and z = r cos θ, then x2 + y2 + z2 is independent of
(a) θ, ϕ
(b) r, θ
(c) r, ϕ
(d) r.
Solution:
(a) θ, ϕ
We have:
x = r sin θ cos ϕ , y = r sin θ sin ϕ and z = r cos θ,
$\therefore x^{2}+y^{2}+z^{2}$
$=(r \sin \theta \cos \phi)^{2}+(r \sin \theta \sin \phi)^{2}+(r \cos \theta)^{2}$
$=r^{2} \sin ^{2} \theta \cos ^{2} \phi+r^{2} \sin ^{2} \theta \sin ^{2} \phi+r^{2} \cos ^{2} \theta$
$=r^{2} \sin ^{2} \theta\left(\cos ^{2} \phi+\sin ^{2} \phi\right)+r^{2} \cos ^{2} \theta$
$=r^{2} \sin ^{2} \theta \times 1+r^{2} \cos ^{2} \theta$
$=r^{2} \sin ^{2} \theta+r^{2} \cos ^{2} \theta$
$=r^{2}\left(\sin ^{2} \theta+\cos ^{2} \theta\right)$
$=r^{2} \times 1$
$=r^{2}$
Thus, $x^{2}+y^{2}+z^{2}$ is independent of $\theta$ and $\phi$.