If $x$ lies in the first quadrant and $\cos x=\frac{8}{17}$, then prove that:
$\cos \left(\frac{\pi}{6}+x\right)+\cos \left(\frac{\pi}{4}-x\right)+\cos \left(\frac{2 \pi}{3}-x\right)=\left(\frac{\sqrt{3}-1}{2}+\frac{1}{\sqrt{2}}\right) \frac{23}{17}$
Given : $0 Now, $\sin x=\sqrt{1-\cos ^{2} x}=\sqrt{1-\frac{64}{289}}=\frac{15}{17}$ $\mathrm{LHS}=\cos \left(\frac{\pi}{6}+x\right)+\cos \left(\frac{\pi}{4}-x\right)+\cos \left(\frac{2 \pi}{3}-x\right)$ $=\cos (30+x)+\cos (45-x)+\cos (120-x)$ $=\cos 30^{\circ} \cos x-\sin 30^{\circ} \sin x+\cos 45^{\circ} \cos x+\sin 45^{\circ} \sin x+\cos 120^{\circ} \cos x+\sin 120^{\circ} \sin x$ $\{$ Using formulas of $\cos (A+B)$ and $\cos (A-B\})$ $=\cos x\left(\cos 30^{\circ}+\cos 45^{\circ}+\cos 120\right)+\sin x\left(-\sin 30^{\circ}+\sin 45^{\circ}+\sin 120^{\circ}\right)$ $=\frac{8}{17}\left(\frac{\sqrt{3}}{2}+\frac{1}{\sqrt{2}}-\frac{1}{2}\right)+\frac{15}{17}\left(-\frac{1}{2}+\frac{1}{\sqrt{2}}+\frac{\sqrt{3}}{2}\right)$ $=\frac{8}{17}\left(\frac{\sqrt{3}-1}{2}+\frac{1}{\sqrt{2}}\right)+\frac{15}{17}\left(\frac{\sqrt{3}-1}{2}+\frac{1}{\sqrt{2}}\right)$ $=\frac{23}{17}\left(\frac{\sqrt{3}-1}{2}+\frac{1}{\sqrt{2}}\right)$ = RHS Hence proved.