If [x] is the greatest integer

Question:

If $[x]$ is the greatest integer $\leq x$, then

$\pi^{2} \int_{0}^{2}\left(\sin \frac{\pi x}{2}\right)(x-[x])^{[x]} d x$ is equal to:

  1. $2(\pi-1)$

  2. $4(\pi-1)$

  3. $4(\pi+1)$

  4. $2(\pi+1)$


Correct Option: , 2

Solution:

$\pi^{2}\left[\int_{0}^{1} \sin \frac{\pi x}{2} d x+\int_{1}^{2} \sin \frac{\pi x}{2}(x-1) d x\right]$

$=\pi^{2}\left[-\frac{2}{\pi}\left(\cos \frac{\pi x}{2}\right)+\left((x-1)\left(-\frac{2}{\pi} \cos \frac{\pi x}{2}\right)\right)_{1}^{2}-\int_{1}^{2}-\frac{2}{\pi} \cos \frac{\pi x}{2} d x\right]$

$=\pi^{2}\left[0+\frac{2}{\pi}+\frac{2}{\pi}+\frac{2}{\pi} \cdot \frac{2}{\pi}\left(\sin \frac{\pi x}{2}\right)_{1}^{2}\right]$

$=4 \pi-4=4(\pi-1)$

Leave a comment