If [x] denotes the greatest integer

Question:

If $[x]$ denotes the greatest integer less than or equal to $\mathrm{x}$, then the value of the integral $\int_{-\pi / 2}^{\pi / 2}[[x]-\sin x] d x$ is equal to :

  1. $-\pi$

  2. $\pi$

  3. 0

  4. 1


Correct Option: 1

Solution:

$I=\int_{\frac{-\pi}{2}}^{\frac{\pi}{2}}([x]+[-\sin x]) d x$..(1)

$I=\int_{\frac{-\pi}{2}}^{\frac{\pi}{2}}([-x]+[\sin x]) d x \ldots(2)$

(King property)

$2 \mathrm{I}=\int_{\frac{-\pi}{2}}^{\frac{\pi}{2}}(\underbrace{[\mathrm{x}]+[-\mathrm{x}]}_{-1})+(\underbrace{[\sin \mathrm{x}]+[-\sin \mathrm{x}]}_{-1}) \mathrm{dx}$

$2 \mathrm{I}=\int_{\frac{-\pi}{2}}^{\frac{\pi}{2}}(-2) \mathrm{d} \mathrm{x}=-2(\pi)$

$I=-\pi$

Leave a comment