If x and y vary inversely as each other and
(i) x = 3 when y = 8, find y when x = 4
(ii) x = 5 when y = 15, find x when y = 12
(iii) x = 30, find y when constant of variation = 900.
(iv) y = 35, find x when constant of variation = 7.
(i) Since $x$ and $y$ vary inversely, we have:
$x y=k$
For $x=3$ and $y=8$, we have :
$3 \times 8=k$
$\Rightarrow k=24$
For $x=4$, we have $:$
$4 y=24$
$\Rightarrow y=\frac{24}{4}$
$=6$
$\therefore y=6$
(ii) Since $x$ and $y$ vary inversely, we have:
$x y=k$
For $x=5$ and $y=15$, we have :
$5 \times 15=k$
$\Rightarrow k=75$
For $y=12$, we have :
$12 x=75$
$\Rightarrow x=\frac{75}{12}$
$=\frac{25}{4}$
$\therefore x=\frac{25}{4}$
(iii) Given :
$x=30$ and $k=900$
$\therefore x y=k$
$\Rightarrow 30 y=900$
$\Rightarrow y=\frac{900}{30}$
$=30$
$\therefore y=30$
(iv) Given :
$y=35$ and $k=7$
Now, $x y=k$
$\Rightarrow 35 x=7$
$\Rightarrow x=\frac{7}{35}$
$=\frac{1}{5}$
$\therefore x=\frac{1}{5}$