Question:
If x and y are inversely proportional, find the values of x1, x2, y1 and y2 in the table given below:
Solution:
Since $x$ and $y$ are inversely proportional, $x y$ must be a constant.
Therefore, $8 \times y_{1}=x_{1} \times 4=16 \times 5=x_{2} \times 2=80 \times y_{2}$
Now, $16 \times 5=8 \times y_{1}$
$\Rightarrow \frac{80}{8}=y_{1}$
$\therefore y_{1}=10$
$16 \times 5=x_{1} \times 4$
$\Rightarrow \frac{80}{4}=x_{1}$
$\therefore x_{1}=20$
$16 \times 5=x_{2} \times 2$
$\Rightarrow \frac{80}{2}=x_{2}$
$\therefore x_{2}=40$
$16 \times 5=80 \times y_{2}$
$\Rightarrow \frac{80}{80}=y_{2}$
$\therefore y_{2}=1$
Hence, $y_{1}=10, x_{1}=20, x_{2}=40$ and $y_{2}=1$