If x and y are integers

Question:

If $x$ and $y$ are integers such that $x^{2}>y^{2}$, then $x^{3}>y^{3}$.

Solution:

False

Suppose, $-1$ and $-2$ are integers

Then, $(-2)^{2^{\prime}}>(-1)^{2}=4>1$

and $(-2)^{3}<(-1)^{3}=-8<-1$

Leave a comment