Question:
If $x$ and $y$ are connected parametrically by the equation, without eliminating the parameter, find $\frac{d y}{d x}$.
$x=\cos \theta-\cos 2 \theta, y=\sin \theta-\sin 2 \theta$
Solution:
The given equations are
Then, $\frac{d x}{d \theta}=\frac{d}{d \theta}(\cos \theta-\cos 2 \theta)=\frac{d}{d \theta}(\cos \theta)-\frac{d}{d \theta}(\cos 2 \theta)$
$=-\sin \theta-(-2 \sin 2 \theta)=2 \sin 2 \theta-\sin \theta$
$\frac{d y}{d \theta}=\frac{d}{d \theta}(\sin \theta-\sin 2 \theta)=\frac{d}{d \theta}(\sin \theta)-\frac{d}{d \theta}(\sin 2 \theta)$
$=\cos \theta-2 \cos 2 \theta$
$\therefore \frac{d y}{d x}=\frac{\left(\frac{d y}{d \theta}\right)}{\left(\frac{d x}{d \theta}\right)}=\frac{\cos \theta-2 \cos 2 \theta}{2 \sin 2 \theta-\sin \theta}$