If $x=-9$ is a root of $\left|\begin{array}{lll}x & 3 & 7 \\ 2 & x & 2 \\ 7 & 6 & x\end{array}\right|$ $=0$, then other two roots are___________
Given: $x=-9$ is a root of $\left|\begin{array}{lll}x & 3 & 7 \\ 2 & x & 2 \\ 7 & 6 & x\end{array}\right|=0$
Let $\Delta=\left|\begin{array}{lll}x & 3 & 7 \\ 2 & x & 2 \\ 7 & 6 & x\end{array}\right|$
$\Delta=\left|\begin{array}{lll}x & 3 & 7 \\ 2 & x & 2 \\ 7 & 6 & x\end{array}\right|$
Applying $R_{1} \rightarrow R_{1}+R_{2}+R_{3}$
$=\left|\begin{array}{ccc}x+2+7 & 3+x+6 & 7+2+x \\ 2 & x & 2 \\ 7 & 6 & x\end{array}\right|$
$=\left|\begin{array}{ccc}x+9 & x+9 & x+9 \\ 2 & x & 2 \\ 7 & 6 & x\end{array}\right|$
Taking out $(x+9)$ common from $R_{1}$
$=(x+9)\left|\begin{array}{lll}1 & 1 & 1 \\ 2 & x & 2 \\ 7 & 6 & x\end{array}\right|$
Applying $C_{2} \rightarrow C_{2}-C_{1}$ and $C_{3} \rightarrow C_{3}-C_{1}$
$=(x+9)\left|\begin{array}{lll}1 & 1-1 & 1-1 \\ 2 & x-2 & 2-2 \\ 7 & 6-7 & x-7\end{array}\right|$
$=(x+9)\left|\begin{array}{ccc}1 & 0 & 0 \\ 2 & x-2 & 0 \\ 7 & -1 & x-7\end{array}\right|$
Expanding through $R_{1}$
$=(x+9)(1(x-2)(x-7))$
$=(x+9)(x-2)(x-7)$
Since, $\Delta=0$
$\Rightarrow(x+9)(x-2)(x-7)=0$
$\Rightarrow x=-9,2,7$
Hence, other two roots are $\underline{2}$ and 7 .