Question:
If $x=3+\sqrt{8}$, find the value of
$\left(x^{2}+\frac{1}{x^{2}}\right)$
Solution:
Given, $x=3+\sqrt{8}$
$\left(x^{2}+\frac{1}{x^{2}}\right)$
We have, $x=3+\sqrt{8}$,
$\frac{1}{x}=\frac{1}{3+\sqrt{8}}$
Rationalizing the denominator by multiplying both numerator and denominator with the rationalizing factor
$3-\sqrt{8}$ for $\frac{1}{3+\sqrt{8}}$
$\frac{1}{x}=\frac{3-\sqrt{8}}{(3+\sqrt{8})(3-\sqrt{8})}$
Since, $(a+b)(a-b)=\left(a^{2}-b^{2}\right)$
$\frac{1}{x}=\frac{3-\sqrt{8}}{9-8}$
$\frac{1}{x}=3-\sqrt{8}$
$\left(x^{2}+\frac{1}{x^{2}}\right)=\left((3+\sqrt{8})^{2}(3-\sqrt{8})^{2}\right)$
$\left(x^{2}+\frac{1}{x^{2}}\right)=((9+8+6 \sqrt{8})+(9+8-6 \sqrt{8}))$
34