Question:
If $(x-1 / x)=7$, Find the value of $x^{3}-1 / x^{3}$
Solution:
Given, If $(x-1 / x)=7$
We know that, $(a-b)^{3}=a^{3}-b^{3}-3 a b(a-b) \ldots 1$
Substitute $(x-1 / x)=7$ in eq 1
$(x-1 / x)^{3}=x^{3}-1 / x^{3}-3(x * 1 / x)(x-1 / x)$
$7^{3}=x^{3}-1 / x^{3}-3(x-1 / x)$
$343=x^{3}-1 / x^{3}-\left(3^{*} 7\right)$
$343=x^{3}-1 / x^{3}-21$
$343+21=x^{3}-1 / x^{3}$
$x^{3}-1 / x^{3}=364$
hence, the result is $x^{3}-1 / x^{3}=364$