If x + 1/x = 11, find the value of x2 + 1/x2

Question:

If $x+1 / x=11$, find the value of $x^{2}+1 / x^{2}$

Solution:

We have, $x+1 / x=11$

Now, $(x+1 / x)^{2}=x^{2}+(1 / x)^{2}+2 * x * 1 / x$

$\Rightarrow(x+1 / x)^{2}=x / 2+1 / x^{2}+2$

$\Rightarrow(11)^{2}=x^{2}+1 / x^{2}+2[? x+1 / x=11]$

$\Rightarrow 121=x^{2}+1 / x^{2}+2$

$\Rightarrow x^{2}+1 / x^{2}=119$

Leave a comment