Question:
If $x=1$ is a common roots of the equations $a x^{2}+a x+3=0$ and $x^{2}+x+b=0$, then $a b=$
(a) 3
(b) 3.5
(c) 6
(d) −3
Solution:
$x=1$ is the common roots given quadric equation are $a x^{2}+a x+3=0$, and $x^{2}+x+b=0$
Then find the value of $q$.
Here, $a x^{2}+a x+3=0$........(1)
$x^{2}+x+b=0 \ldots$ (2)
Putting the value of $x=1$ in equation (1) we get
$a \times 1^{2}+a \times 1+3=0$
$a+a+3=0$
$2 a=-3$
$a=-\frac{3}{2}$
Now, putting the value of $x=1$ in equation (2) we get
$1^{2}+1+b=0$
$2+b=0$
$b=-2$
Then,
$=3$
Thus, the correct answer is (a)