Question:
If $x=1$ is a common root of $a x^{2}+a x+2=0$ and $x^{2}+x+b=0$, then, $a b=$
(a) 1
(b) 2
(c) 4
(d) 3
Solution:
$x=1$ is the common roots given quadric equation are $a x^{2}+a x+2=0$, and $x^{2}+x+b=0$
Then find the value of $a b$.
Here, $a x^{2}+a x+2=0$.........(1)
$x^{2}+x+b=0$......(2)
Putting the value of $x=1$ in equation (2) we get
$1^{2}+1+b=0$
$2+b=0$
$b=-2$
Now, putting the value of $x=1$ in equation (1) we get
$a+a+2=0$
$2 a+2=0$
$a=\frac{-2}{2}$
$=-1$
$a b=(-1) \times(-2)$
Then,
$=2$
Thus, the correct answer is (b)