Question:
If velocity $[\mathrm{V}]$, time $[\mathrm{T}]$ and force $[\mathrm{F}]$ are chosen as the base quantities, the dimensions of the mass will he.
Correct Option: , 2
Solution:
${[\mathrm{M}]=\mathrm{K}[\mathrm{F}]^{\mathrm{a}}[\mathrm{T}]^{\mathrm{b}}[\mathrm{V}]^{\mathrm{c}} }$
${\left[\mathrm{M}^{\mathrm{l}}\right]=\left[\mathrm{M}^{\mathrm{l}} \mathrm{L}^{\mathrm{1}} \mathrm{T}^{-2}\right]^{\mathrm{a}}\left[\mathrm{T}^{\mathrm{l}}\right]^{\mathrm{b}}\left[\mathrm{L}^{\mathrm{l}} \mathrm{T}^{-1}\right]^{\mathrm{c}} }$
$\mathrm{a}=1, \mathrm{~b}=1, \mathrm{c}=-1$
$\therefore[\mathrm{M}]=\left[\mathrm{FTV}^{-1}\right]$