Question.
If $u_{i}=\frac{x_{i}-25}{10}, \Sigma f_{i} u_{i}=20, \Sigma f_{i}=100$, then $\bar{x}=$
(a) 23
(b) 24
(c) 27
(d) 25
If $u_{i}=\frac{x_{i}-25}{10}, \Sigma f_{i} u_{i}=20, \Sigma f_{i}=100$, then $\bar{x}=$
(a) 23
(b) 24
(c) 27
(d) 25
solution:
Given: $u_{i}=\frac{x_{i}-25}{10}, \Sigma f_{i} u_{i}=20$ and $\Sigma f_{i}=100$
Now, $u_{i}=\frac{x_{i}-A}{h}=\frac{x_{i}-25}{10}$
Therefore, $h=10$ and $A=25$
We know that
$\bar{x}=A+h\left\{\frac{1}{N} \sum f_{i} u_{i}\right\}$
$=25+10\left\{\frac{1}{100} \times 20\right\}$
$=25+10 \times \frac{1}{5}$
$=25+2$
$\bar{x}=27$
Hence, the correct option is (c).
Given: $u_{i}=\frac{x_{i}-25}{10}, \Sigma f_{i} u_{i}=20$ and $\Sigma f_{i}=100$
Now, $u_{i}=\frac{x_{i}-A}{h}=\frac{x_{i}-25}{10}$
Therefore, $h=10$ and $A=25$
We know that
$\bar{x}=A+h\left\{\frac{1}{N} \sum f_{i} u_{i}\right\}$
$=25+10\left\{\frac{1}{100} \times 20\right\}$
$=25+10 \times \frac{1}{5}$
$=25+2$
$\bar{x}=27$
Hence, the correct option is (c).