If U = {2, 3, 5, 7, 9} is the universal set and A = {3, 7}, B = {2, 5, 7, 9}, then prove that:
(i) $(A \cup B)^{\prime}=A^{\prime} \cap B^{\prime}$
(ii) $(A \cap B)^{\prime}=A^{\prime} B^{\prime}$.
Given:
U = {2, 3, 5, 7, 9}
A = {3, 7}
B = {2, 5, 7, 9}
To prove :
(i) $(A \cup B)^{\prime}=A^{\prime} \cap B^{\prime}$
(ii) $(A \cap B)^{\prime}=A^{\prime} \cup B$,
Proof :
(i) LHS:
$(A \cup B)=\{2,3,5,7,9\}$
$(A \cup B)^{\prime}=\phi$
RHS
$A^{\prime}=\{2,5,9\}$
$B^{\prime}=\{3\}$
$A^{\prime} \cap B^{\prime}=\phi$
LHS = RHS
$\therefore(A \cup B)^{\prime}=A^{\prime} \cap B^{\prime}$
(ii) LHS
$(A \cap B)=\{7\}$
$(A \cap B)^{\prime}=\{2,3,5,9\}$
RHS
$A^{\prime}=\{2,5,9\}$
$B^{\prime}=\{3\}$
$A^{\prime} \cup B^{\prime}=\{2,3,5,9\}$
LHS = RHS
$\therefore(A \cap B)^{\prime}=A^{\prime} \cup B^{\prime}$