If two similar springs each of spring constant

Question:

If two similar springs each of spring constant $\mathrm{K}_{1}$ are joined in series, the new spring constant and time period would be changed by a factor:

  1. $\frac{1}{2}, \sqrt{2}$

  2. $\frac{1}{4}, \sqrt{2}$

  3. $\frac{1}{4}, 2 \sqrt{2}$

  4. $\frac{1}{2}, 2 \sqrt{2}$


Correct Option: 1

Solution:

$\frac{1}{\mathrm{k}_{e q}}=\frac{1}{\mathrm{k}_{1}}+\frac{1}{\mathrm{k}_{2}}$

$\frac{1}{k_{e q}}=\frac{1}{k}+\frac{1}{k} \Rightarrow k_{e q}=\frac{k}{2}$

$k^{\prime}=\frac{k}{2}$

$\mathrm{T}=2 \pi \sqrt{\frac{\mathrm{M}}{\mathrm{k}}}$

$T^{\prime}=2 \pi \sqrt{\frac{M}{k^{\prime}}}$

$\Rightarrow T^{\prime}=2 \pi \sqrt{\frac{M}{k}} \times \sqrt{2}$

$\mathrm{T}^{\prime}=\sqrt{2} \mathrm{~T}$

 

Leave a comment