If two lines intersect prove that the vertically opposite angles are equal
Given Two lines AB and CD intersect at point O.
To prove
(i) $\angle A O C=\angle B O D$
(ii)$\angle A O D=\angle B O C$
Proof
(i) Since, ray $O A$ stands on line $C D$.
$\therefore$ $\angle A O C+\angle A O D=180^{\circ}$ [linear pair axiom]...(1)
Since, ray $O D$ stands on line $A B$.
$\therefore$ $\angle A O D+\angle B O D=180^{\circ}$ [linear pair axiom] ...(ii)
From Eqs. (i) and (ii).
$\angle A O C+\angle A O D=\angle A O D+\angle B O D$
$\Rightarrow$ $\angle A O C=\angle B O D$
(ii) Since, ray $O D$ stands on line $A B$.
$\therefore$ $\angle A O D+\angle B O D=180^{\circ}$ [linear pair axiom].....(iii)
Since, ray $O B$ stands on line $C D$.
$\therefore \quad \angle D O B+\angle B O C=180^{\circ}$ $\ldots(\mathrm{iv})$
From Eqs. (iii) and (iv),
$\angle A O D+\angle B O D=\angle D O B+\angle B O C$
$\Rightarrow$ $\angle A O D=\angle B O C$ Hence proved.