If there is an error of 2% in measuring the length of a simple pendulum, then percentage error in its period is
If there is an error of 2% in measuring the length of a simple pendulum, then percentage error in its period is
(a) $1 \%$
(b) $2 \%$
(c) $3 \%$
(d) $4 \%$
(a) 1%
Let l be the length if the pendulum and T be the period.
Also, let $\Delta l$ be the error in the length and $\Delta T$ be the error in the period.
We have
$\frac{\Delta l}{l} \times 100=2$
$\Rightarrow \frac{d l}{l} \times 100=2$
Now, $T=2 \pi \sqrt{\frac{1}{g}}$
Taking log on both sides, we get
$\log T=\log 2 \pi+\frac{1}{2} \log l-\frac{1}{2} \log g$
Differentiating both sides w.r.t. $x$, we get
$\frac{1}{T} \frac{d T}{d l}=\frac{1}{2 l}$
$\Rightarrow \frac{d T}{d l}=\frac{T}{2 l}$
$\Rightarrow \frac{d l}{l} \times 100=2 \frac{d T}{T} \times 100$
$\Rightarrow \frac{d T}{T} \times 100=\frac{2}{2}$
$\Rightarrow \frac{\Delta T}{T} \times 100=1$
Hence, there is an error of $1 \%$ in calculating the period of the pendulum.