Question:
If the zeroes of the polynomial $x^{3}-3 x^{2}+x+1$ are $(a-b), a$ and $(a+b)$, find the values of $a$ and $b$.
Solution:
The given polynomial $=x^{3}-3 x^{2}+x+1$ and its roots are $(a-b), a$ and $(a+b)$.
Comparing the given polynomial with $A x^{3}+B x^{2}+C x+D$, we have :
$A=1, B=-3, C=1$ and $D=1$
Now, $(a-b)+a+(a+b)=\frac{-B}{A}$
$=>3 a=-\frac{-3}{1}$
$=>a=1$
Also, $(a-b) \times a \times(a+b)=\frac{-D}{A}$
$=>a\left(a^{2}-b^{2}\right)=\frac{-1}{1}$
$=>1\left(1^{2}-b^{2}\right)=-1$
$=>1-b^{2}=-1$
$=>b^{2}=2$
$=>b=\pm \sqrt{2}$
$\therefore a=1$ and $b=\pm \sqrt{2}$