Question:
If the third term in the binomial expansion of
$\left(1+x^{\log _{2} x}\right)^{5}$ equals 2560 , then a possible value of $x$ is:
Correct Option: , 4
Solution:
$\left(1+x^{\log _{2} x}\right)^{5}$
$\mathrm{T}_{3}={ }^{5} \mathrm{C}_{2} \cdot\left(\mathrm{x}^{\log _{2} \mathrm{x}}\right)^{2}=2560$
$\Rightarrow 10 \cdot x^{2 \log _{2} x}=2560$
$\Rightarrow x^{2 \log _{2} x}=256$
$\Rightarrow 2\left(\log _{2} x\right)^{2}=\log _{2} 256$
$\Rightarrow 2\left(\log _{2} x\right)^{2}=8$
$\Rightarrow\left(\log _{2} x\right)^{2}=4$
$\Rightarrow \quad \log _{2} x=2$ or $-2$
$x=4$ or $\frac{1}{4}$