Question:
If the tangent to the curve, $y=x^{3}+a x-b$ at the point $(1,-5)$ is perpendicular to the line, $-x+y+4=0$, then which one of the following points lies on the curve?
Correct Option: 4,
Solution:
$y=x^{3}+a x-b$
Since, the point $(1,-5)$ lies on the curve.
$\Rightarrow 1+a-b=-5$
$\Rightarrow a-b=-6$ ...........(1)
Now, $\frac{d y}{d x}=3 x^{2}+a$
$\Rightarrow\left(\frac{d y}{d x}\right)_{\text {at } x=1}=3+a$
Since, required line is perpendicular to $y=x-4$,
then slope of tangent at the point $P(1,-5)=-1$
$\therefore 3+a=-1$
$\Rightarrow \mathrm{a}=-4$
$\Rightarrow \mathrm{b}=2$
$\therefore$ the equation of the curve is $\mathrm{y}=\mathrm{x}^{3}-4 \mathrm{x}-2$
$\Rightarrow(2,-2)$ lies on the curve