Question:
If the system of linear equations,
$x+y+z=6$
$x+2 y+3 z=10$
$3 x+2 y+\lambda z=\mu$
has more than two solutions, then $\mu-\lambda^{2}$ is equal to_________.
Solution:
$x+y+z=6$.....(i)
$x+2 y+3 z=10$...(ii)
$3 x+2 y+\lambda z=\mu$...(iii)
From (i) and (ii),
If $z=0 \Rightarrow x+y=6$ and $x+2 y=10$
$\Rightarrow y=4, x=2$
$(2,4,0)$
If $y=0 \Rightarrow x+z=6$ and $x+3 z=10$
$\Rightarrow \quad z=2$ and $x=4$
$(4,0,2)$
So, $3 x+2 y+\lambda z=\mu$, must pass through $(2,4,0)$ and
$(4,0,2)$
So, $6+8=\mu \Rightarrow \mu=14$
and $12+2 \lambda=\mu$
$12+2 \lambda=14 \Rightarrow \lambda=1$
So, $\mu-\lambda^{2}=14-1=13$