If the system of linear equations

Question:

If the system of linear equations

$x-4 y+7 z=g$

$3 y-5 z=h$

$-2 x+5 y-9 z=k$

is consistent, then :

  1. $\mathrm{g}+\mathrm{h}+\mathrm{k}=0$

  2. $2 \mathrm{~g}+\mathrm{h}+\mathrm{k}=0$

  3. $\mathrm{g}+\mathrm{h}+2 \mathrm{k}=0$

  4. $\mathrm{g}+2 \mathrm{~h}+\mathrm{k}=0$


Correct Option: , 2

Solution:

$\mathrm{P}_{1} \equiv \mathrm{x}-4 \mathrm{y}+7 \mathrm{z}-\mathrm{g}=0$

$\mathrm{P}_{2} \equiv 3 \mathrm{x}-5 \mathrm{y}-\mathrm{h}=0$

$\mathrm{P}_{3} \equiv-2 \mathrm{x}+5 \mathrm{y}-9 \mathrm{z}-\mathrm{k}=0$

Here $\Delta=0$

$2 \mathrm{P}_{1}+\mathrm{P}_{2}+\mathrm{P}_{3}=0$ when $2 \mathrm{~g}+\mathrm{h}+\mathrm{k}=0$

Leave a comment