If the sums of n terms of two APs are in ratio (2n + 3) : (3n + 2), find the ratio of their 10th terms.
Given: sums of n terms of two APs are in ratio (2n + 3) : (3n + 2)
To find: find the ratio of their 10th terms
For the sum of n terms of two APs is given by
$\mathrm{S}_{1}=\frac{\mathrm{n}}{2}\left(2 \mathrm{a}_{1}+(\mathrm{n}-1) \times \mathrm{d}_{1}\right)$
$\mathrm{S}_{2}=\frac{\mathrm{n}}{2}\left(2 \mathrm{a}_{2}+(\mathrm{n}-1) \times \mathrm{d}_{2}\right)$
$\frac{\mathrm{S}_{1}}{\mathrm{~S}_{2}}=\frac{2 \mathrm{n}+3}{3 \mathrm{n}+2}$
$=\frac{\left(2 \mathrm{a}_{1}+(\mathrm{n}-1) \times \mathrm{d}_{1}\right.}{\left(2 \mathrm{a}_{2}+(\mathrm{n}-1) \times \mathrm{d}_{2}\right)}$
Or we can write it as
$=\frac{\left(a_{1}+\frac{(n-1) \times d_{1}}{2}\right)}{\left(a_{2}+\frac{(n-1) \times d_{2}}{2}\right)}$
For $10^{\text {th }}$ term put $\frac{(\mathrm{n}-1)}{2}=10$
n = 19
Therefore the ratio of the 10th term will be
$=\frac{2 \times 19+3}{3 \times 19+2}$
$\Rightarrow 41: 57$