If the sum of the roots of the equation $x^{2}-x=\lambda(2 x-1)$ is zero, then $\lambda=$
(a) $-2$
(b) 2
(c) $-\frac{1}{2}$
(d) $\frac{1}{2}$
The given quadric equation is $x^{2}-x=\lambda(2 x-1)$, and roots are zero.
Then find the value of $\lambda$.
Here,
$x^{2}-x=\lambda(2 x-1)$
$x^{2}-x-2 \lambda x+\lambda=0$
$x^{2}-(1+2 \lambda) x+\lambda=0$
$a=1, b=-(1+2 \lambda)$ and, $c=\lambda$
As we know that $D=b^{2}-4 a c$
Putting the value of $a=1, b=-(1+2 \lambda)$ and, $c=\lambda$
$=\{-(1+2 \lambda)\}^{2}-4 \times 1 \times \lambda$
$=1+4 \lambda+4 \lambda^{2}-4 \lambda$
$=1+4 \lambda^{2}$
The given equation will have zero roots, if $D=0$
$1+4 \lambda^{2}=0$
$4 \lambda^{2}=-1$
$\lambda^{2}=\frac{-1}{4}$
$\lambda=\sqrt{\frac{-1}{4}}$
$=\frac{-1}{2}$
Therefore, the value of $\lambda=-\frac{1}{2}$
Thus, the correct answer is $(c)$