If the sum of the roots of the equation

Question:

If the sum of the roots of the equation $k x^{2}+2 x+3 x=0$ is equal to their product, then the value of $k$ is

(a) $\frac{1}{3}$

(b) $\frac{-1}{3}$

(C) $\frac{2}{3}$

(d) $\frac{-2}{3}$

 

Solution:

(d) $\frac{-2}{3}$

Given:

$k x^{2}+2 x+3 k=0$

Sum of the roots $=$ Product of the roots

$\Rightarrow \frac{-2}{k}=\frac{3 k}{k}$

$\Rightarrow 3 k=-2$

$\Rightarrow k=\frac{-2}{3}$

 

Leave a comment