Question:
If the sum of the coefficients of all even powers of $x$ in the product
$\left(1+x+x^{2}+\ldots+x^{2 n}\right)\left(1-x+x^{2}-x^{3}+\ldots+x^{2 n}\right)$ is 61 , then $n$ is equal to___________.
Solution:
Let $\left(1-x+x^{2} \ldots . . x^{2 n}\right)\left(1+x+x^{2} \ldots . . x^{2 n}\right)$
$=a_{0}+a_{1} x+a_{2} x^{2}+\ldots . .$
put $x=1$
$1(2 n+1)=a_{0}+a_{1}+a_{2}+\ldots . . a_{2 n}$.......(1)
put $x=-1$
$(2 n+1) \times 1=a_{0}-a_{1}+a_{2}+\ldots \ldots a_{2 n} \quad \ldots$ (2)
Adding (1) and (2), we get,
$4 n+2=2\left(a_{0}+a_{2}+\ldots \ldots\right)=2 \times 61$
$\Rightarrow 2 n+1=61 \Rightarrow n=30$