Question:
If the sum of the binomial coefficients of the expansion $\left(2 x+\frac{1}{x}\right)^{n}$ is equal to 256, then the term independent of $x$ is
(a) 1120
(b) 1020
(c) 512
(d) none of these
Solution:
(a) 1120
Suppose $(r+1)$ th tem in the given expansion is independent of $x$.
Then, we have
$T_{r+1}={ }^{n} C_{r}(2 x)^{n-r}\left(\frac{1}{x}\right)^{r}$
$={ }^{n} C_{r} 2^{n-r} x^{n-2 r}$
For this term to be independent of $x$, we must have
$n-2 r=0$
$\Rightarrow r=n / 2$
$\therefore$ Required term $={ }^{n} C_{n / 2} 2^{n-n / 2}=\frac{n !}{[(n / 2) !]^{2}} 2^{n / 2}$
We know :
Sum of the given expansion $=256$ Thus,
we have
$2^{n} \cdot 1^{n}=256$
$\Rightarrow n=8$
$\therefore$ Required term $=\frac{8 !}{(4) !(4) !} 2^{4}=1120$