If the sum of the areas of two circles with radii R1 and R2 is equal to the area of a circle of radius R, then

Question:

If the sum of the areas of two circles with radii R1 and R2 is equal to the area of a circle of radius R, then

(a) $R_{1}+R_{2}=R$

(b) $R_{1}+R_{2}

(c) $R_{1}^{2}+R_{2}^{2}

 

(d) $R_{1}^{2}+R_{2}^{2}=R^{2}$

 

 

 

Solution:

(d) $R_{1}^{2}+R_{2}^{2}=R^{2}$

Because the sum of the areas of two circles with radii $R_{1}$ and $R_{2}$ is equal to the area of a circle with radius $R$, we have:

$\pi R_{1}^{2}+\pi R_{2}^{2}=\pi R^{2}$

$\Rightarrow \pi\left(\mathrm{R}_{1}^{2}+\mathrm{R}_{2}^{2}\right)=\pi \mathrm{R}^{2}$

$\Rightarrow \mathrm{R}_{1}^{2}+\mathrm{R}_{2}^{2}=\mathrm{R}^{2}$

 

Leave a comment